Pengertian Resiko Bank (Bank Risk) dan Jenis/Macam Resiko Bank (Bank Risk) Part 1

Dear Pembaca Budiman, sebelum membahas tentang resiko bank, akan dibahas dulu pengertian tentang resiko (risk). Apa itu resiko (risk)? Menurut ISO 31000 (2009) / ISO Guide 73:2002, definisi dari resiko (risk) adalah “the effect of uncertainty on objectives. Ketidakpastian mencakup peristiwa (yang mungkin atau tidak mungkin terjadi) dan ketidakpastian yang disebabkan oleh ambiguitas atau kurangnya informasi. Ini juga mencakup dampak negatif dan positif pada tujuan.

Kemudian, apa sih resiko bank (bank risk  itu? Menurut Siamat (2005:279) bahwa resiko usaha bank atau business risk bank merupakan suatu tingkat ketidakpastian mengenai pendapatan yang diperkirakan akan diterima. Pendapatan dalam hal ini adalah keuntungan bank. Resiko bank merupakan resiko yang mungkin akan dihadapi oleh bank dan resiko tersebut diperhitungkan untuk mengetahui apakah keberadaan bank saat ini dapat menghadapi resiko yang mungkin muncul.

Pembahasan selanjutnya ada DI SINI

Iklan

Fraud : Pengertian Fraud, Kriteria Tindakan Fraud Dan Unsur-Unsur Fraud

Pemirsah yang budiman 🙂 Anda kenal dengan fraud ? atau pernah jalan-jalan dengan fraud ? hehehe…  apasih fraud sebenarnya itu? Kriteria apa saja kira-kira suatu tindakan dapat dikatakan sebagai fraud? Apa saja unsur-unsur fraud?  terus, apa saja jenis-jenis fraud dan apa saja faktor-faktor pendorong fraud? Sebelum membahas tentang jenis-jenis fraud dan faktor-faktor pendorong fraud, berikut disajikan pengertian fraud, kriteria tindakan fraud serta unsur-unsur fraud dari beberapa referensi.

Pengertian Fraud

Menurut Karyono (2013) “fraud dapat diistilahkan sebagai kecurangan yang mengandung makna suatu penyimpangan dan perbuatan melanggar hukum (illegal act), yang dilakukan dengan sengaja untuk tujuan tertentu misalnya menipu atau memberikan gambaran keliru (mislead) …. dst

Kami melayani Jasa Olah data SPSS Eviews Stata Lisrel AMOS Murah di Jakarta. Kami Konsultan Jasa Olah Data SPSS Eviews Stata Lisrel AMOS PLS Murah di jakarta bogor tangerang bekasi (jabodetabek).

Anda sedang mencari konsultan jasa olah data SPSS Eviews Stata Lisrel AMOS Murah / analisis data statistik MURAH di jakarta bogor tangerang bekasi (jabodetabek) ?

Kami, Bengkeldata.com merupakan konsultan jasa olah data SPSS Eviews Lisrel AMOS Murah / analisis data statistik MURAH di jakarta bogor tangerang bekasi (jabodetabek). Konsultan Jasa Olah Data SPSS Eviews Stata Lisrel AMOS PLS Murah di jakarta bogor tangerang bekasi (jabodetabek).

Unsur-Unsur Fraud

Tindakan fraud merupakan tindakan yang mengandung beberapa unsur. Menurut Mary-Jo Kranacher et al(2011) fraud terdiri dari 3 unsur yang terkandung yaitu (Umar, 2016):

  1. Conversion

Conversion yaitu menipu, merekayasa dan membohongi. Fraud dimulai dengan adanya niat jahat untuk memanipulasi dan merekayasa suatu kondisi untuk kepentingan dirinya dan kelompoknya yang tentunya akan merugikan pihak lain.

  1. Cocealment

Cocealment yang berarti menyembunyikan….  selanjutnya dapat Anda baca di halaman ini

Aplikasi Metode Ekonometri (ARCH, GARCH, EGARCH, TARCH, EMA, CARR) di Eviews dalam Peramalan Volatilitas Harga Saham

Penelitian tentang peramalan volatilitas harga saham di pasar saham telah banyak dilakukan di berbagai negara dengan berbagai metode ekonometrika (ARCH, GARCH, EGARCH, TARCH, EMA, CARR) yang ada di program Eviews. Penelitian-penelitian di Evews, dapat juga dilakukan dengan metode moving average (EMA), random walk (RW), historical average, moving average (MA), auto regression (AR), ARMA, ARIMA, simple regression, exponential smoothing, exponentially weighted moving average (EMA). Namun penelitian-penelitian tersebut harus dicari dahulu metode ekonometrika yang cocok sehingga ditemukan metode yang paling baik untuk meramal volatilitas.

Penelitian-penelitian yang telah dilakukan sebelumnya mengenai peramalan volatilitas dikutip dari Yu (2002), diantaranya: Baca lebih lanjut

Analisis Data dengan General Autoregressive Conditional Heteroscedasticity Model ( GARCH ), Threshold ARCH ( T-ARCH )

Pengujian dengan regresi bertujuan untuk mengukur kekuatan dan menunjukkan arah hubungan antara variabel dependen dengan variabel independen. Data yang digunakan penelitian ini berbentuk time series karena menggunakan data harian, misalnya diambil data dari Januai 2010 – July 2011. Dengan data time series dapat ditemukan pola pertumbuhan atau perubahan masa lalu, yang dapat digunakan untuk kegiatan bisnis dan keuangan. Data time series memiliki kecenderungan varian error term yang tidak konstan dari waktu ke waktu, maka varian residual dari data time series tidak konstan dan berubah-ubah dari satu periode ke periode lainnya atau mengandung unsur heteroskedastis. Dengan tingginya volatilitas data maka perlu dibuat model pendekatan tertentu untuk mengukur masalah volatilitas residual. Salah satu pendekatan adalah dengan memasukkan variable independen yang mampu memprediksikannya.

Untuk mengatasi varying time dependent (variansi dari error yang tidak konstan) maka akan digunakan model ARCH yang dikembangkan oleh Engle, 1982 dan GARCH (Bollerslev, 1986) yang memodelkan selain autoregresi juga memodelkan variansi dari error (condditional heteroscedascity of variance).

Asumsi yang selama ini menjadi kajian aliran utama ekonometrika yakni data time series kecenderungan mempunyai kesalahan pengganggu atau residual (error term) yang konstan dari waktu ke waktu berdasarkan kenyataan tersebut dalam bahasa ekonometrika berarti bahwa varian dari data time series ini tidak konstan tetapi berubah-ubah dari satu periode ke periode yang lain. Varian dari residual bukan lagi hanya fungsi variabel independen tetapi selalu berubah-ubah, tergantung seberapa besar residual dimasa lalu (Rahayu dan Firmansyah, 2004).

Model ekonometrika yang tepat untuk mengestimasikan perilaku seperti itu disebut Autoregressive Conditional Heteroscedasticity Model (ARCH). Model ini pertama kali dikembangkan oleh Robert Engle. Sebelumnya ARCH lebih dulu dikenal dengan metode peramalan Autoregressive Integrated Moving Average (ARIMA) yang dikembangkan oleh Box-Jenkins. Yaitu merupakan suatu metode yang menghasilkan ramalanramalan berdasarkan sintesis dari pola data secara historis. Akan tetapi kelemahan dari model ini adalah data yang digunakan harus di stasionerkan lebih dahulu, sehingga memakan waktu yang relatif lama. Pengujian untuk mengetahui ada tidaknya pola harian terhadap volatilitas maka model variance error dimodifikasi sebagaimana yang dilakukan oleh Hsieh (1988) dalam Buddi Wibowo (2004) dalam model ARCH.

Untuk melihat innovation effect yaitu apakah kenaikan dan penurunan indeks saham mempengaruhi volatilitasnya, dapat digunakan T-ARCH (Threshold ARCH). olahdata ini dapat dilakukan dengan eviews