Daftar Referensi Buku Statistik dan Buku Aplikasi Software Statistik ( SPSS LISREL AMOS PLS SAS STATA SPLUS R )

Berikut adalan sebagian Daftar Buku-Buku Aplikasi Software Statistik ( SPSS LISREL AMOS PLS SAS STATA SPLUS R )

  • Advances in Clinical Trial Biostatistics by Nancy L. Geller
  • Analysis of Incomplete Multivariate Data by Joe Schafer
  • Analysis of Messy Data, Volume III: Analysis of Covariance by George A. Milliken Dallas E. Johnson
  • Analysis of Pretest-Posttest Designs by Peter L. Bonate
  • Applied Nonparametric Statistical Methods, Third Edition by Peter Sprent Nigel Charles Smeeton
  • Applied Statistical Designs for the Researcher by Daryl S Paulson
  • Bayes and Empirical Bayes Methods for Data Analysis, Second Edition by Bradley P Carlin Thomas A Louis
  • Clinical Trials in Oncology, Second Edition by Stephanie Green Jacqueline Benedetti John Crowley
  • Contemporary Statistical Models for the Plant and Soil Sciences by Oliver Schabenberger Francis J Pierce
  • Contingency Table Approach to Nonparametric Testing by A J.C.W. Rayner D.J. Best
  • CRC Standard Probability and Statistics Tables and Formulae by Daniel Zwillinger Stephen Kokoska
  • Data Mining Using SAS Applications by George Fernandez
  • Design and Analysis of Cross-Over Trials, Second Edition by Byron Jones M.G. Kenward
  • EM Algorithm and Related Statistical Models, by The Michiko Watanabe Kazunori Yamaguchi
  • Environmental Statistics with S-PLUS by Steven P. Millard Nagaraj K. Neerchal
  • Generalized Latent Variable Modeling: Multilevel, Longitudinal, and Structural Equation Models by Anders Skrondal Sophia Rabe-Hesketh (2 copies)
  • Group Sequential Methods with Applications to Clinical Trials by Christopher Jennison Bruce W. Turnbull
  • Handbook of Parametric and Nonparametric Statistical Procedures, Second Edition by David J Sheskin
  • Handbook of Statistical Analyses Using SAS, Second Edition by Geoff Der Brian S. Everitt
  • Handbook of Statistical Analyses Using SPSS, A Sabine Landau Brian S Everitt
  • Handbook of Statistical Analyses using S-Plus, Second Edition by Brian S. Everitt
  • Handbook of Statistical Analyses Using Stata, Second Edition by Sophia Rabe-Hesketh Brian S. Everitt
  • Hierarchical Modeling and Analysis for Spatial Data by Sudipto Banerjee Bradley P Carlin Alan E Gelfand
  • Introduction to Generalized Linear Models, Second Edition by Annette J. Dobson
  • Measures of Interobserver Agreement by Mohamed M. Shoukri
  • Multidimensional Scaling, Second Edition Trevor F. Cox M.A.A. Cox
  • Sample Size Calculations in Clinical Research by Shein-Chung Chow Jun Shao Hansheng Wang
  • Sampling Methodologies with Applications by Poduri S.R.S. Rao
  • Statistical and Econometric Methods for Transportation Data Analysis by Simon P Washington Matthew G Karlaftis Fred L Mannering
  • Statistics in Drug Research: Methodologies and Recent Developments by SHEIN-CHUNG CHOW JUN SHAO
  • Statistical Methods for Health Sciences, Second Edition by Mohamed M. Shoukri Cheryl A. Pause
  • Statistics in the 21st Century by Adrian E. Raftery Martin A. Tanner Martin T. Wells
  • Theory of the Design of Experiments, The by Sir David R. Cox Nancy Reid
  • Time-Series Forecasting by Chris Chatfield
  • Topics in Modeling of Clustered Data by Marc Aerts Geert Molenberghs Helena Geys Louise Ryan

Baca lebih lanjut

Iklan

Analisis Data dengan General Autoregressive Conditional Heteroscedasticity Model ( GARCH ), Threshold ARCH ( T-ARCH )

Pengujian dengan regresi bertujuan untuk mengukur kekuatan dan menunjukkan arah hubungan antara variabel dependen dengan variabel independen. Data yang digunakan penelitian ini berbentuk time series karena menggunakan data harian, misalnya diambil data dari Januai 2010 – July 2011. Dengan data time series dapat ditemukan pola pertumbuhan atau perubahan masa lalu, yang dapat digunakan untuk kegiatan bisnis dan keuangan. Data time series memiliki kecenderungan varian error term yang tidak konstan dari waktu ke waktu, maka varian residual dari data time series tidak konstan dan berubah-ubah dari satu periode ke periode lainnya atau mengandung unsur heteroskedastis. Dengan tingginya volatilitas data maka perlu dibuat model pendekatan tertentu untuk mengukur masalah volatilitas residual. Salah satu pendekatan adalah dengan memasukkan variable independen yang mampu memprediksikannya.

Untuk mengatasi varying time dependent (variansi dari error yang tidak konstan) maka akan digunakan model ARCH yang dikembangkan oleh Engle, 1982 dan GARCH (Bollerslev, 1986) yang memodelkan selain autoregresi juga memodelkan variansi dari error (condditional heteroscedascity of variance).

Asumsi yang selama ini menjadi kajian aliran utama ekonometrika yakni data time series kecenderungan mempunyai kesalahan pengganggu atau residual (error term) yang konstan dari waktu ke waktu berdasarkan kenyataan tersebut dalam bahasa ekonometrika berarti bahwa varian dari data time series ini tidak konstan tetapi berubah-ubah dari satu periode ke periode yang lain. Varian dari residual bukan lagi hanya fungsi variabel independen tetapi selalu berubah-ubah, tergantung seberapa besar residual dimasa lalu (Rahayu dan Firmansyah, 2004).

Model ekonometrika yang tepat untuk mengestimasikan perilaku seperti itu disebut Autoregressive Conditional Heteroscedasticity Model (ARCH). Model ini pertama kali dikembangkan oleh Robert Engle. Sebelumnya ARCH lebih dulu dikenal dengan metode peramalan Autoregressive Integrated Moving Average (ARIMA) yang dikembangkan oleh Box-Jenkins. Yaitu merupakan suatu metode yang menghasilkan ramalanramalan berdasarkan sintesis dari pola data secara historis. Akan tetapi kelemahan dari model ini adalah data yang digunakan harus di stasionerkan lebih dahulu, sehingga memakan waktu yang relatif lama. Pengujian untuk mengetahui ada tidaknya pola harian terhadap volatilitas maka model variance error dimodifikasi sebagaimana yang dilakukan oleh Hsieh (1988) dalam Buddi Wibowo (2004) dalam model ARCH.

Untuk melihat innovation effect yaitu apakah kenaikan dan penurunan indeks saham mempengaruhi volatilitasnya, dapat digunakan T-ARCH (Threshold ARCH). olahdata ini dapat dilakukan dengan eviews

Analisa Data Statistik : Analisis Faktor-Faktor yang Mempengaruhi Volatilitas Cadangan Devisa Indonesia menggunakan Time Series Analysis dengan Metode ARCH – GARCH dan VAR

Data finansial seperti cadangan devisa, nilai tukar, maupun tingkat suku bunga mempunyai karakteristik tersendiri dibandingkan data deret waktu (time series). Beberapa karakteristik dari data finansial yaitu menunjukan volatilitas yang tinggi mengikuti periode waktu, sedangkan variansi/ragam adalah konstan untuk data jangka waktu yang panjang.

Dalam beberapa periode terdapat variansi/ragam data finansial relatif tinggi. Keadaan ini disebut conditionally heteroskedastic. Jika terdeteksi adanya conditionally heteroskedastic maka model autoregressive moving average (ARMA) tidak akurat lagi untuk digunakan. Model deret waktu (time series) yang mengakomodir adanya heteroskedastic / heteroskedastisitas adalah ARCH (Autoregressive Conditional Heteroscedasticity) / GARCH (General Autoregressive Conditional Heteroscedasticity) . Model lain selain ARCH & GARCH adalah TARCH, E-GARCH, M-GARCH, TGARCH dan lain-lain.

Variabel-variabel ekonomi biasanya nonstasioner dan mempunyai sifat kointegrasi, sehingga model statistik yang dibentuk harus dapat mengatasi dan mencerminkan sifat tersebut. Metode yang sesuai dengan permasalahan ini adalah metode VAR (Vector Autoregression).

Variabel yang digunakan sebanyak lima variabel makro ekonomi. Kelima Variabel tersebut yakni cadangan devisa, nilai tukar rupiah terhadap USD, tingkat suku bunga, Indeks Harga Saham Gabungan (IHSG) dan netto ekspor.

Metodologi yang digunakan dimulai dengan metode ARCH/GARCH yang fungsinya untuk mengatahui ada tidaknya volatilitas dari masing-masing variabel yang diteliti. Selanjutnya dengan metode VAR akan selidiki pengaruh volatilitas dari variabel nilai tukar, suku bunga, IHSG dan neto ekspor terhadap volatilitas cadangan devisa. Hasil model VAR yang diperoleh tersebut kemudian digunakan untuk melakukan uji berikutnya yaitu uji kointegrasi Johansen untuk mengetahui hubungan keseimbangan jangka panjang dan Vector Error Correction Mechanism (VECM) untuk mengetahui hubungan keseimbangan jangka pendek.

Kesimpulan dari hasil analisa data yaitu bahwa variabel-variabel yang terdeteksi adanya ARCH/GARCH adalah variabel cadangan devisa, IHSG, nilai tukar, dan neto ekspor. Sedangkan variabel tingkat suku bunga tidak menunjukkan gejala adanya heteroskedastisitas dalam series datanya.

Untuk Konsultasi Analisa data selanjutnya, yang berhubungan dengan Time Series Analisis (AR, MA, ARMA, ARIMA, ARCH, GARCH, TARCH, E-GARCH, M-GARCH, T-GARCH, dll) menggunakan eviews silahkan menghubungi :

Beta Consulting

Telp: (021)3333 7389 – 0819 4505 9000
Email: info@bengkeldata.com

www.Bengkeldata.com
www.olah-data.com

follow us:
http://Twitter.com/olahdata

ARCH, GARCH, cadangan devisa, IHSG, neto ekspor, nilai tukar, tingkat suku bunga, uji kointegrasi, volatilitas, VAR, VECM, heteroskedastisitas, ARMA, deret waktu, time series, heteroskedastic, analisa data, konsultan, jasa,analisis data,analisis data statistik, analisa data, analisa data statistik, jasa statistik, konsultan statistik, jasa survei, konsultan survey, jasa riset pasar, konsutan riset pasar,skripsi, tesis, disertasi,ahli, olah data, olahdata, pengolahan, olah data, statistik, statistika, skripsi, tesis, data panel, regresi, korelasi, SEM, validitas, reliabilitas, survei pasar, alpha, cronbach, pearson, tugas, akhir, sarjana, jakarta, penelitian, spss, eviews, amos, lisrel, minitab, regresi, konsultasi, konsultan, analisis data, analisis data statistik, analisa data, analisa data statistik, jasa statistik, konsultan statistik, jasa survei, konsultan survey, jasa riset pasar, konsutan riset pasar , skripsi, tesis, disertasi,ahli, olahdata, pengolahan, olah data, statitistik, statistika, skripsi, tesis, data panel, regresi, korelasi, SEM, validitas, reliabilitas, survei pasar, alpha, cronbach, pearson,tugas, akhir, sarjana, jakarta, penelitian, spss, amos

Analisa Data : Analisis Data pada Model Regresi Data Panel

Data panel atau panel data atau Pooled Data adalah gabungan dari data time series (antar waktu) dan data cross section (antar individu/ruang). Untuk menggambarkan panel data / data panel / Pooled Data secara singkat, misalkan pada data cross section, nilai dari satu variabel atau lebih dikumpulkan untuk beberapa unit sampel pada suatu waktu waktu. Dalam panel data / data panel / pooled data , unit cross section yang sama di-survey dalam beberapa waktu (Gujarati, 2003:637).
Regresi dengan menggunakan panel data / data panel / pooled data, memberikan beberapa keunggulan dibandingkan dengan pendekatan standar cross section dan time series.

Begini, misalkan kita punya data 50 Bank, masing – masing Bank dicari ROI, NOPAT, dan lainnya untuk tahun 2007 saja, maka data tersebut disebut dengan data Cross Section. Tapi, kalau kita punya data 1 Bank, namun data ROI, NOPAT, dan data lainnya dari Bank tersebut kita miliki sejak tahun 1998 hingga 2007, maka data tersebut disebut dengan data Time Series.
Gabungan dari keduanya, yaitu 50 Bank dengan beberapa satuan waktu misalkan 1998 hingga 2007 disebut dengan Data Panel (Pooled Data).

Keunggulan dan Permasalahan Regresi dengan Data Panel
Hsiao (1986), mencatat bahwa penggunaan panel data / data panel  / pooled data dalam penelitian ekonomi memiliki beberapa keuntungan utama dibandingkan data jenis cross section maupun time series.
Pertama, dapat memberikan peneliti jumlah pengamatan yang besar, meningkatkan degree of freedom (derajat kebebasan), data memiliki variabilitas yang besar dan mengurangi kolinieritas antara variabel penjelas, di mana dapat menghasilkan estimasi ekonometri yang efisien.
Kedua, panel data dapat memberikan informasi lebih banyak yang tidak dapat diberikan hanya oleh data cross section atau time series saja.
Ketiga, panel datadata panel dapat memberikan penyelesaian yang lebih baik dalam inferensi perubahan dinamis dibandingkan data cross section.

Di samping berbagai keunggulan dimiliki model panel datadata panel  / pooled data tersebut, ada beberapa permasalahan yang muncul dalam pemanfaatan data panel, yaitu permasalahan autokorelasi dan heterokedastisitas. Sementara itu ada permasalahan baru yang muncul seperti korelasi silang (cross-correlation) antar unit individu pada periode yang sama.

Estimasi Regresi dengan Data Panel
Estimasi model data panel ergantung kepada asumsi yang dibuat peneliti terhadap intersep/konstanta (intercept), koefisien kemiringan (slope coefficients) dan variabel error (error term). Model-model estimasi ini akan ditinjau pada kesempatan lain.

Regresi dengan data panel adalah unik. Unik karena memiliki dua dimensi, yaitu dimensi time series dan dimensi cross section. Dengan kata lain, regresi data panel merupakan regresi gabungan jangka pendek dan jangka panjang. Ada dua autokorelasi di dalam regresi data panel / data panel : autokorelasi residual time series, dan korelasi antar residual. Begitu juga dengan heteroskedastisitas : heteroskedastisitas residual cross-section, heteroskedastisitas antar residual.

Analisis data panel / data panel merupakan pengembangan dari analisis regresi. Terdapat tiga metode regresi dasar yang ada, yaitu Common Pooled Least Square (OLS), Fixed Effect Regression, dan Random Effect.

Metode mana yang paling sesuai ? Untuk mengetahui jawabannya, harus dilakukan 2 buah Uji, yaitu Uji Hausmann dan Uji Chow.

Untuk konsultasi lebih lanjut, silahkan hubungi:

http://www.bengkeldata.com

CS : 021-3333 7398- 08194505 9000
e-mail : info@bengkeldata.com

==========================================
IKLAN—IKLAN—IKLAN—

Beta Consulting ( Bengkeldata.com ) merupakan sebuah lembaga konsultasi untuk membantu perusahaan/perorangan dalam melakukan analisa data statistika, olah data penelitian , riset pasar dan konsultasi manajemen.

LAYANAN
1. Olah Data Statistika/ analisa data Penelitian
2. Training Statistika : SPSS, Eviews, SAS, Lisrel, Minitab, Amos
3. Riset Pasar
4. Management Consultancy

Hubungi:
Beta Consulting ( Bengkeldata.com )
Telp: (021) 3333 7398 – 0819 4505 9000

email : info@bengkeldata.com

=======================================

Layanan Analisa Data / Analisis Data

Jenis layanan dari Beta Consulting meliputi:

1. Analisa Data Statistika
– Questioner Design
– Experimental Design
– Validity & Reliability
– Regresi & Korelasi
– CHAID Analysis
– Multivariat Analysis
– Time Series Analysis
– Spatial Analysis
– Bootstrap Methode
– Parametric & Nonparametric Analysis, dll

2. Training Statistika
Training ini meliputi materi statistika dan/atau software statistika, yaitu :
– SPSS
– Minitab
– SAS
– S-Plus
– Eview

3. Riset Pasar
– Potential Market
– Mistery Shopping
– Customized Market
– Positioning Analysis
– Product Development
– Competiror Analysis, dll

4. Management Consultancy
– Internal Auditor
– Quality Management System (QMS) ISO 9001:2000 & ISO 9004:2000
– Guidelines for Performance Improvement ISO 9004:2000
– Balance Scorecard
– Six Sigma
– Customer Satisfaction Measurement (CSM)
– Statistical Process Control (SPC)
– Customer Relationships Management (CRM)

www. Bengkeldata.com

email: info@bengkeldata.com

CS : (021) 71088944